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Abstract

The reachability sets of Vector Addition Systems of dimension six or more can

be non-semilinear. This may be one reason why the inclusion problem (as well as

the equality problem) for reachability sets of vector addition systems in general is

undecidable, even though the reachability problem itself is known to be decidable. We
show that any one-dimensional projection of the reachability set of an arbitrary vector
addition system is semilinear, and hence "simple",
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1 Introduction

Vect or Adlition Systes (VAS). and Petri nets, their equivalent graphical representation,
are vlI-kniiwn molels for the representation of aspects of parallel control, like liveness, or
absence of (leadlock. A central probleni in their study is the description of the set of all
states reachable in a given vector addition system, the so-called reachability set. In [71. it
was shown that the membership )roblem for VAS reachability sets is decidable. For VAS's
of dimension at most five, [4] establishes that their reachabilitv sets are in fact seniilinear,
and gives aln effective method for their construction. For dimensions above five, [4] also
exhibits examples of VAS's with non-semnilinear reachability sets.

The inherent complexity of VAS reachability sets is further underlined by the fact that
the containment problem as well as the equality problem for VAS reachability sets ar
undecidable [1, 3]. and by the exponential space lower bound :nown for the reachabilitv
problem [6. 8]. In particular, small "Petri net computers" can be built to simulate Turing
machine computations using exponential space.

Often. we are interested in the values attainable for a certain component of a VAS. We
will prove as the main result of this paper, that the projection of a VAS repchability set
onto a single coordinate is always seinilinear. and hence has a (relatively) simple structure.
Of course, our result follows trivially if we restrict ourselves to VAS's with components of
absolute value at most one. The problem is non-trivial, however, in the general case. A
constructive proof of our result would, in fact., provide another proof of the decidability
of the reachability problem since the latter is known to be recursively equivalent to the
problem of deciding whether zero is reachable in a specified component [3].

A variant of Petri nets allows inhibitor arcs which make the firability of a transition
dependent upon the condition that a place contain no tokens. It is well-known that the
reachability problem for Petri nets with inhibitor arcs is undecidable [3]. We give an
example of such nets for which certain components no longer have semilinear projections.

The remainder of this paper is organized as follows: in section 2, we give basic
definitions and state the main result of the paper. Section 3 first states a rumber-theoretic
Lemma which is essential for the subsequent proof of our result, and we conclude in section
4 outlining some possible extensions and open problems.

2 Basic Definitions and Main Result

We first introduce sonic bac,- concepts and notation. A vector addition system or VAS
is a pair (x, V). The vector x E N ' is called the initial or stnrting vector, the integer
a is the dimension of the VAS, and V C Z' is a finite set of transition vectors. The
reachability set of a VAS (x, V) is the smallest set R(x, V) satisfying the following two
pr(operties: (i) x z Rk'.L, '), aid 'il) ZicE.. , x, V), v G V, an z + v EN
then z + v E R(x, V); i.e., R(x, V) is closed under addition of transition vectors as
long as the sum has only nonnegative components. We also say that z E R(x,V) is
reachable in (x. V1. A transition sequence (1t)())_i<<t of transition vectors )(0 is applicable
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ti soine vector y C- N" if y + E , ' N' for all I t. In this case, the vector
- = , i v J'€ ) is called reachable from y in (,r, V). To denote this, we also us y -y+ z.

Thus. R(ir. V) = {z: a -v, z}.
For x E Z ' . we use x, to denote the i-th component of the vector .r, and we let R:(ra. 1")

stail(1 for the projection {i" z C R(x, V)} of the reachability set I?(,r, IV) onto the i-th
,')T)MoIent. The linear ordering < of the integers is extended, in the cannical way, to the

p)8rtial or(lering < of Z ' , i.e., for ', y E Z". we have x < y iff a', < y for 1 < i < 1. and
I/ -i ia" < 11 and r and y are different.

A li nuar sul)set L of N" is a set of the form

t

L {b + n ib(' }" 71i G N for i 1. t
i=1

IOV s"t- v.ctors bb ( l) . ... b( t) E N ' (often, b is called the base of L, and the b(0 ) its
,rrio,, ). A sernilinear set is a finite union of linear sets.

Seiilinear sets have raany desirable properties. It turns out that they are exactly
the :,'ts descril)able within the first order logic of the natural numbers with addition,

al,,() known as Presburger Arithmetic [9]. Our main result states that projections of \ AS

rca('hal)ilitv sets also fall into this class.

Theorem 1 Let (x, V) be an arbitrary VAS of dimension n, and i C {1,. n}. Then the

p rojc,:tion, R(xr. V) of the reachability set R(x, V) is semilinear.

We shall give a proof of this Theorem in the next section.

3 Proof of Main Theorem

We first state a couple of lemmata which are essential later on in the proof of our main

result.

Lemma 3.1 Let S be a subset of N such that there are no, t > 0 with the property that

sES s>n 0  s+tES.

Then the .et S is semilinear.

Proof: Define, for z =0..... t - 1,

Sj:-= {s E S; s > o, 6 = z mod t},

1t1(l set
S:{s E S; s < no}.

2



Clearly. S = S! U U'=0 Si. Also, each Si is linear. For suppose that Si $ 0, and let
ml :- inii: s SE. Then ii > n0 , and by the condition of the Lemma, mi + kt E S,
for all A' > 0. Since ., E S, il fact implies s = mi Mod t we obtain

S, {i + kt k > 01,

which is clearly linear.
Since Sj is finite. an(d since semilinear sets are closed under (finite) union, S is

semilincar. [

Leiinia 3.2 Let a bc an infinite ,5equence of vector3 from N n . Then a contains an infinite.
(with re.spect to <) nondecreasing subsequence.

This Lernnia sometimes is referred to as Dickson's Lemma [2]. We omit a proof which
can easily be obtained by induction on the dimension n.

Next, we describe an algorithm to construct, for a given VAS (x, V), its reachability tree
T(x,. 1). This reachability tree is a directed graph (not quite, but almost, a tree) whose
edg1-es are labelled with transitions v E V, and whose nodes are labelled with so-called
pseudo-i,,ectors which we shall describe below. Our construction is similar to constructions
given in [5. 7],. with some teclnical adaptations.

Pseudo-vectors of an n-dimensional VAS are vectors in (N U {w})n, i.e., n-dimensional
vectors whose components are either nonnegative integers or the special element W. The
intuitive rivaning for w, is that it stands for a value that can become arbitrarily large.
Formally. it satisfies the following rules:

; + r =r + - w, for all rnE Z.

Applicability of (finite) transition sequences to pseudo-vectors, and reachability of one
pseudo-vector from another are defined as for vectors.

algorithm T(x. V);
co given a \'AS (x, V), this algorithm constructs its reachability tree T T(x, V) oc

begin
let T initially consist of node r, with label 1(r) = x;
mark r as active;
while 7 contains some active node p (with label l(p)) do

for every v E V
(i) which is applicable to 1(p), and
(ii) for which there is no edge labelled v out of p yet

do
add to T a new, active node q, with label 1(q) =- 1(p) + v;
add to T the arc (p,q), with label v;
if there is a node q' with l(q') = I(q) on the simple path from r to p
co a path is simple if it contains no cycle oc

3



then
replace the arc (p,q) by (p, q') with label v, and delete q from T

elsf therc is a node q" on the simple path from r to p such that
(i) (q) and l(q") have the same set of w-coordinates,
(ii) l(q") < I(q)

co if there are several such q" one is picked at random oc
then

co we call q an w-node oc
add to T a cycle, starting and ending in q, with the same edge sequence and edge
labels as the path from q" to q;
label the nodes on this cycle, including q, the same as the corresponding nodes on the
path from q" to q, except that all coordinates i where (l(q"))i < (l(q))i become w;
mark all nodes on the cycle as active
co we call this cycle the w-cycle of q oc

fi
od:

mark p as inactive
od

end algorithm T.

As indicated in the specification of the algorithm, we shall refer to nodes where new

,,-coordinates are introduced as w-nodes, and we call the cycle attached to such a node
when it is created its Lw-cycle.

Theorem 2 Algorithm T terminates.

Proof: Applying K6nig's Lemma, it suffices to show that there cannot be an infinite
simple path starting from the root r. Since, whenever node q is reachable from node p in

T, label l(q) contains at least the w-coordinates present in l(p), and since the dimension
n of the VAS is finite, it even suffices to show that there can be no infinite simple path

with all nodes having the same set of w-coordinates. The last claim follows immediately

from Lemma 2, applied to the projection of the labels onto the non-w-coordinates, and the

definition of the algorithm. 5

Lemma 3.3 Suppose z = l(p) is the label of some node p in the reachability tree T(x, V).
Let (v())i<i<t be a tranqition sequence applicable to z. Then there is a unique path in
T(x, V) starting from p whose edge label sequence is (v())l<i<t.

Proof: The proof is immediate from the statement of the algorithm, by induction on the

length t of the transition sequence. 0

Lemma 3.4 Let p be some w-node in the reachability tree T(x, V), and let (v(i))i<i<i be
the sequence of edge labels along its w-cycle, starting at p. Then, for 6= t v(3), we

have
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(i) , > 0 for all cw',,dinate. 1 uhich bccomc v ew .,.,-coordinate.s at p:
(H) () fr (111 fin it(. (i.e.. flort-,2) coo ,dinat cs of l(p).

For coordi nate., i which are alrcady equal to w at earlier nodes on the (simple) path from
th. , root r to p. (, can be arbitrar 4'.

Proof: Again. the claim of the Lemma follows immediately from the statement of the
algorithm. -

As we have seen above, every vector sequence applicable to the initial vector x

corresponds to a unique ppth in T(.r. V), starting at the root. Conversely, it Is 'lear
that not every such path corresponds to an applicable vector sequence, due to the effect of
-.'-coordinates. However, we are still able to infer the existence of certain applicable vector
sequences from the structure of the reachability tree T(x, V).

More precisely, let p be some ,;-node in T(r, V), let p(1),. ,p(k) be the other wc-nodes
on the simple path from r to p, in order, and let I and -f(i) be the sequences of the e(ige

labels around the &- cycles through p and p(l), respectively. Also, let a(i), for i 1 k.
be the sequence of edge labels between p(-l) (r for i = 1) and p(i) along any path from
The root to p, and let a be definec similarly between p(k) and p. For any vector seqtuence
.3 and 3'. we shall use b(,3) to denote the sum of all the vectors in /, 033' to denote the
concatenation of 3 and 3'. and 3 k to denote the k-fold iteration of '3.

Lemma 3.5 Let notation be as above. Then there are integers n1 ,. . ., nk > 0, and

b. bk > 0 ,ach that. for every t > 0, the vector sequence /3 (0) defined as
t.nl +bl tnk +b

>3(t) 0= (1) a (2) .. ' Y(k) ) -

i.t applicable to the initial vector x, and

k

(E n, + 6('y))z > 0
j=1

for all ,;-coordinates of l(p).

Proof: The proof is by induction on k.

k = 0: The claim follows since there are no w-coordinates in labels of nodes above p in
the tree, and because of Lemma 4.

k > 0: Suppose the Lemma is true for all values up to k - 1, and let n,..... - and

b'. ... bl..I be numbers as claimed by the Lemma. Let

;3,(t) ) t.n' b' t-n -1 +bl- t
0 (1 ) 0 (2) 0 (k-l)^Y(k l) 0t(k)r(k).

Also, let I' be the set of w-coordinates of l(p(k)), and I the set of coordinates which become
new w-coordinates at p. Note that the i-th coordinate of j- i

5j n"673)+( )i rae



, :,i: C: u', atO in I'. Lv tli ( iid part of Tle induction hypolhesis. and
" (I ' :t11 other coordiiiates, because of L, nna 4. Hence, there are minimal t'

sum rthi;r ,i th1 e vector sequence -, is applicable t o x+ ( ;3'{ ) . and (ii) the i-th
':,o:c:it of 4' '(2) _( .! 1 2') is positive for all i E I'. Note that

, it )! 'Ir' iii I of this last sumn are alitomiat cal1% greater than zero. W.e claim that
I - )' , for 1. , 1. k t'. I' - I . and 7k n' satisfy

hn' Leini,,, Since the second part of the Lemma is true bv construction we only have to
-, tI ' i- Ilpplicable to the initial vector x f)r all t. For t < I this is immediate

fir:i tli, construction, and for t > 1 we note( that

4- + t ' I > X _ t (. - 1 '-t' t - )

; :Ii -Inc'-'-- is applicable to the latter, so it is to the former. But this means in fact that
Iit, " ;lppiicabhle to ., concluding our proof. -

Lemma 3.6 Let (k be any vector sequnce applicable to x' such that the path corresponding
, , i7r Tir, V) contain. an i;-node where the i-th coordinate becomes w,. Then there is
oi, f t > 0 s ,,wh that R(x., V) contains (x" + 6(a ))+ kt, for all k > 0.

Proof: Decomnpose 0 into a'a" where n' is the prefix of a of maximal length ending
t the .-- node where coordinate i becomes an ,;-coordinate. Then the claim follows from

Lemia 5 and Lemma 4. -
',e are no-w able to finish the proof of Theorem 1. WAe partition the vector sequences

oolj)!icah!)e to the initial vector x into classes CP and Co: the class C, with p an w-node in

7 . . V) where the i-th coordinate becomes ,;, is to contain all applicable vector sequences

wh,ose c,rresponding path in T('.r, V) contains p. and Co all remaining vector sequences.
Clerly. ly the finiteness of the reachability tree., the set So = {(x + 6(a)),; a E Co} is
finlite. Also. by Lemma 1 and Lemma 6. each of the sets Sp {(x + 6 (a))j; a C CP} is

>eiiihimiear. and hence so is the union of the SP and So. Since this union is equal to Ri(x, V)
tIie prooIf ,f Theorem I is complete.

As an immediate consequence of Theorem 1 we also obtain that the set of all integers
wvhiich ar, equal to the sum of the components of a vector in the reachability set is
..e:nihiiet ar.

Corollary Lt (.r. IV) be art arbitrary VAS of dimension 72. Then, the set
n

Ri.(x. V) { (Y)j; Y E R(x, V)}

.A . emilhCar.

Proof: Modify the given vector addition system (x, V) by introducing the sun of the
('1onponleIlts of a vector as an additional component. An application of Theorem 1 on the
resulting vector addition systeni (x'. V') defined by

n

." := (1 .... r)
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()Ive., ii>' Ihe seinlillinearitv of Rior." 1') =W a'', 1'').

4 Conclusion

In thle t (riiiliololgy of Petri nets Theorem I ineans that the set of p)ossible numbhers of

oke'ns fr r a 'err ain place of a Pet ri net starting with some initial marking is seiiiilinear.

(Fr lefiuiit i( fl see [,3, 5].)
AI1 )wiiiu Inhibitor arcs leads to a varint of Petri iiets with un(IecidalbIc reachability

Iproleni 31;. In contrast to ordlinarv Petri nets there are examples of these riets with

1Ijol- -'niiiar pro j ct ions for certain components.

Era rtipZ: Petri nets with inhibitor arcs can be used to simulate programs via simunlation
ofregister niiii'eine com11putat ions, and certain projections of the reachability setsatn

xith ;t (-crtaiii Initial mai~rking correspond to the set of all values of a variab~le taken duringf
the rin of the programn.

InI the following prog-ranil the variale d takes all values in the noni-semnihinear set

.4 :{fd G N d > 2, 3c> 1 : d = c + lcngt h(c),

where( I ;ith (c) = [1og( c + 1) is the length of the binary representation of c:

d( 2
r: 1:

while true do
r ± =-r+I

if ( :;r :c=2') then
d dI + 2

else
dI d+ I

fi
od.

Obviolisly a certain Projection of the reachability set of the simulating Petri net will

b~e the noti-scinilinear set A.
The above net, however, will contain several inhibitor arcs. In case of only one inhibitor

arc it is still openi. whether there exists a net and a place in it with a non- semihlinear set of

HIiiakiigs. Finally, it should also be mentioned that the reachability problem for nets with
Wnly one inihibitor arc is still open.
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